Category Archives: ИТ

Compiling OpenCV on mac OS 10.13.6 with CUDA

Just a little hint for myself:

cmake -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=$PWD/install \
-DWITH_CUDA=ON -DWITH_OPENMP=ON \
-DOPENCV_EXTRA_MODULES_PATH=<path to opencv contrib repo>/modules \
-DOPENCV_CUDA_FORCE_BUILTIN_CMAKE_MODULE=ON \
-DWITH_PROTOBUF=ON \
-DOPENCV_EXTRA_SHARED_LINKER_FLAGS="-lomp" \
<path to opencv source>

Important things here:

  • OPENCV_CUDA_FORCE_BUILTIN_CMAKE_MODULE – is required, due to some weird staff in cmake (cmake internal FindCUDA.cmake seems to be wrong), this comment on opencv github by alalek was extemely usefull and provided us with right hint.
  • WITH_PROTOBUF is also required, otherwise it fails with crazy libprotobuf linker errors.
  • OPENCV_EXTRA_SHARED_LINKER_FLAGS=”-lomp” If you’re using clang 10 or older, you’ll need to to add “-lomp” to linker flags manually, because it ignores “-fopenmp” flag which cmake passes to clang driver in this case. Look’s like it falls just here:

  • Rest of flags looks pretty obvious
Please follow and like us:

Simple script to create Mac OS installation .iso media

Preamble

It is supposed, that you downloaded it with App Store, and it is stored as .app in your /Applications directory.

Below is script. The only parameter you have to customize is a “DIST” variable, which should be your distributive name (“Mojave”, “Catalina” and so on).

This article is based on instructions from techsviewer.com

As a result you should get .iso file on your desktop with name of your distributive (e.g. “Catalina.iso”).

Script

create-macos-iso.sh

DIST=Mojave
DMG_FILE=/tmp/$DIST
DMG_FILE_EXT=/tmp/$DIST.dmg
VOL_NAME=/Volumes/$DIST
INSTALL_APP="Install macOS $DIST.app"
MEDIA_VOL="Install macOS $DIST"
CDR_FILE="$HOME/Desktop/$DIST.cdr"
ISO_FILE="$HOME/Desktop/$DIST.iso"

echo Create dmg... &&
hdiutil create -o $DMG_FILE -size 8500m -volname $VOL_NAME \
       -layout SPUD -fs HFS+J &&

echo Attach dmg... &&
hdiutil attach $DMG_FILE_EXT -noverify -mountpoint $VOL_NAME &&

echo Create install media... &&
sudo /Applications/"$INSTALL_APP"/Contents/Resources/createinstallmedia \
    --volume $VOL_NAME --nointeraction &&

echo Detach $MEDIA_VOL... &&
hdiutil detach /Volumes/"$MEDIA_VOL" &&

echo Convert $DMG_FILE_EXT -\> $CDR_FILE &&
hdiutil convert $DMG_FILE_EXT -format UDTO -o $CDR_FILE &&

echo Rename $CDR_FILE -\> $ISO_FILE &&
mv $CDR_FILE $ISO_FILE &&

echo Cleanup... &&
rm $DMG_FILE_EXT
Please follow and like us:

Anti make install

What to do if you accidentally installed some experimental project to your system folder? Are here any ways to undo install script. Here is a simple solution.

Preamble

below may work or may not, this is all given as-is, you and only you are responsible person in case of some damage, data loss and so on. But I hope things go smooth!

To undo `make install` I would do (and I did) this:

Idea: check whatever script installs and undo this with simple bash script.

1. Reconfigure your build dir to install to some custom dir. I usually do this: `–prefix=$PWD/install`. For CMake, you can go to your build dir, open CMakeCache.txt, and fix CMAKE_INSTALL_PREFIX value.
2. Install project to custom directory (just run `make install` again).
3. Now we push from assumption, that `make install` script installs into custom dir just same contents you want to remove from somewhere else (usually `/usr/local`). So, we need a script.
3.1. Script should compare custom dir, with dir you want clean. I use this:

anti-install.sh

RM_DIR=$1
PRESENT_DIR=$2

echo "Remove files from $RM_DIR, which are present in $PRESENT_DIR"

pushd $RM_DIR

for fn in `find . -iname '*'`; do
# echo "Checking $PRESENT_DIR/$fn..."
if test -f "$PRESENT_DIR/$fn"; then
# First try this, and check whether things go plain
echo "rm $RM_DIR/$fn"

# Then uncomment this, (but, check twice it works good to you).
# rm $RM_DIR/$fn
fi
done

popd

3.2. Now just run this script (it will go dry-run)

bash anti-install.sh <dir you want to clean> <custom installation dir>

E.g. You wan’t to clean /usr/local, and your custom installation dir is /user/me/llvm.build/install, then it would be

bash anti-install.sh /usr/local /user/me/llvm.build/install

3.3. Check log carefully, if commands are good to you, uncomment `rm $RM_DIR/$fn` and run it again. But stop! Did you really check carefully? May be check again?

Good luck!

Please follow and like us:

C++ sql-like Select example (imperfect)

I just would like to keep it here…

May be there is better implementation? Spent on it 30 mins, have no more time today.

// select.cpp

#include <vector>
#include <iostream>

  template<
      typename OutputCollectionT,
      typename OutputItemT = typename OutputCollectionT::value_type
  >
  class Select {
  public:
      template<
          typename InputCollectionT,
          typename InputItemT = typename InputCollectionT::value_type
      >
      class From {
      public:
          static OutputCollectionT Do(
              const InputCollectionT &Input,
              std::function<OutputItemT(const InputItemT &In)> Selector
          ) {
            OutputCollectionT Out;
            for (const InputItemT &In : Input) {
              Out.push_back(Selector(In));
            }
            return Out;
          }
      };
  };

struct A {
    int P1;
    int P2;
    int P3;
};

struct B {
    int P1;
    int P3;
};

int main() {
  std::vector<A> aa = {
      {1, 2, 3},
      {2, 3, 4},
      {3, 4, 5}
  };

  auto bb = Select<std::vector<B>>::From<std::vector<A>>::Do(
      aa, [=] (const A &a) -> B {
        return { a.P1, a.P3 };
      }
  );

  for (auto &b : bb) {
    std::cout
    << "P1:" << b.P1 << ", "
    << "P3:" << b.P3 << "\n";
  }

  return 0;
}
Please follow and like us:

Edge detection shader for text

Hi there! I’m working on text rendering for my small Bird OSD project.

So I want to add contours to the text, so it could be visible whatever background it is rendered on (bright or dark).

For example I want to enhance text rendering for cases like this:

(Ugh… My eyes suffer!)

Into this one:

Assuming we have 1-component color on input which consists only of alpha channel, I want to mark as edge alpha values around 0.5.

Below is my shader which works, and in fact above are screenshots with its demonstraction. It still has some limits though. Edge radius  can’t take values ended with .5 due to special rounding case for N*0.5 values. If you use it, and find more issues, please let me know.

edge-detection.glsl
// The inpute textures
uniform sampler2D uTexture;
varying vec2 vTexCoord;  // Interpolated texture coordinate per fragment.

uniform float uOpacity;

uniform float uWidth;

uniform float uHeight;

// If foreground value is higher than threshold, than edge is zero for this pixel
const float NO_EDGE_TRESHOLD = 0.5;

// Edge radius, works fine in range from 0.6 to 2.0
// Please don't use N*0.5 values, since it has special rounding rules
// and pixel at the left may be in is not the same distance comparing to the right.
const float EDGE_RADIUS = 1.;

const vec3 EDGE = vec3(0., 0., 0.);

// Detects whether we should put edge value in the center.
// Not that if the center is foreground value = 1, then there is
// no need in edge
// (in practice we also admit some values below 1,
// determined by threshold).
// We work with fonts, not the regular image, so
// edge is a function from average of two pixels (not the difference):
// f(l, r) = edge((l + r) / 2)
//    assuming edge should be max, when input value is "k" (belongs to range (0, 1) )
// So, how 'edge' function is defined?
// (see picture if formulaes are difficult)
//    edge(v) = (1./k) * x, if x <= k && x > 0
//              otherwise it is line which goes through p1[x,y] = [1, k] and p2[x,y] = [0, 1]
//
//  Y ^
//    | p[y=1,x=k]
//    |  /\
//    | /  \
//    |/    \
//    ----------->
//    0  k  1    X
//    y=edge(x) formulae
//
// in case when k = 0.5 then
//
// f(l, r) = 1 - |l + r - 1|
//
// Let's use this case!
//
// params:
//    left - left foreground value
//    center - center foreground value
//    right - right foreground value
// returns:
//    edge value.
//
float getEdge(float left, float center, float right) {
    if (center > NO_EDGE_TRESHOLD)
        return 0.;

    if (center > left && center > right)
        return 0.;

    float ledge = 1. - abs(left + center - 1.);
    float redge = 1. - abs(right + center - 1.);

    return max(ledge, redge);
}

float getNeighbour(float row, float col) {
    float dx = EDGE_RADIUS / uWidth;
    float dy = EDGE_RADIUS / uHeight;

    float texX = clamp(vTexCoord.x + col * dx, 0. + dx/2., 1. - dx/2.);
    float texY = clamp(vTexCoord.y + row * dy, 0. + dx/2., 1. - dx/2.);

    return texture2D(uTexture, vec2(texX, texY)).a;
}

float calcEdge(float centerValue) {
    // Nighbour pixels:
    // neighbour[i][j] is neighbour with X = x + (j-1) * DX; Y = y + (i-1) * DY;
    // neighbour[0][0] is neighbour with X = x - DX; Y = y - DY;
    float neighbour_0[3];
    float neighbour_1[3];
    float neighbour_2[3];

    for (int j = 0; j != 3; ++j)
        neighbour_0[j] = getNeighbour(-1., float(j-1));

    for (int j = 0; j != 3; ++j)
        neighbour_1[j] = getNeighbour(0., float(j-1));

    for (int j = 0; j != 3; ++j)
        neighbour_2[j] = getNeighbour(1., float(j-1));

    float horEdge = getEdge(neighbour_1[0], centerValue, neighbour_1[2]);
    float vertEdge = getEdge(neighbour_0[1], centerValue, neighbour_2[1]);
    float ltrbEdge = getEdge(neighbour_0[0], centerValue, neighbour_2[2]);
    float rtlbEdge = getEdge(neighbour_0[2], centerValue, neighbour_2[0]);

    return max( max(horEdge, vertEdge), max(ltrbEdge, rtlbEdge) );
}

vec4 calcFinalValue(vec3 foreground, float foregroundValue, float edgeValue) {
#if 1
    float sumFgEdge = foregroundValue + edgeValue;
    vec3 color = vec3(
        foreground * foregroundValue / sumFgEdge +
        EDGE * edgeValue / sumFgEdge);

    return vec4(color.r, color.g, color.b, min(sumFgEdge, 1. * uOpacity));

    //return vec4(EDGE, edgeValue);
#else
    return vec4(foreground.r, foreground.g, foreground.b, foregroundValue);
#endif
}

// The entry point for our fragment shader.
void main()
{
    vec4 texColor = texture2D(uTexture, vTexCoord);

    float foregroundValue = texColor.a;
    float edgeValue = calcEdge(foregroundValue);

    gl_FragColor = calcFinalValue(
        vec3(texColor.r, texColor.g, texColor.b),
        foregroundValue,
        edgeValue
    );
}
Please follow and like us:

The Bird Project

Bird OSD

Introduction

You have Raspberry Camera and you need FPV, but you can’t fight 100-200ms latency? Then there is a solution.

Bird OSD turns your Raspberry PI into FPV stream source with OSD overlay.

How?

Since raspberry has Video Composite Output, you can then cast raspberrian screen just like a regular FPV signal over FPV transmitter module!

Raspberry Pi works on broadcomm SoC  with VideoCore processor so that means we can apply OSD overlay to camera stream with really low realtime latencies.

X server is not requried

Bird OSD is a systemd service, it uses raspivid app to grab camera image, and it uses own bird-osd GLES2 application to apply overlay with sensor data on it.

So finally you should see something like this:

(GPS was broken, sorry, still can’t demonstrate in real fly)

Another pic from FPV goggles:

Prerequirements

  1. RPI device with sensors board (navio2 is ok)
  2. Raspberry Camera connected to it.
  3. Something sending MAVLink data to 127.0.0.1:14550(running ardupilot, arducopter, whatever)

How to install

Download .deb package onto your raspberry device:

$ wget http://ppa.dyatkovskiy.com/raspbian/pool/main/b/bird-osd/bird-osd_1.1.2_armhf.deb

And then install it:

$ sudo dpkg -i bird-osd_1.1.2_armhf.deb

Then you should target MAVLink channel to 127.0.0.1:14550

E.g. for arducopter:

$ sudo nano /etc/default/arducopter 

Ensure you have string like this:

TELEM1="-A udp:127.0.0.1:14550"

Or like this:

TELEM2="-C udp:127.0.0.1:14550"

In case you modified /etc/default/arducopterconfig, then you should restart service:

$ sudo systemctl restart arducopter

Finally you should start bird-osdservice with this command:

sudo systemctl start bird-osd

Then on monitor connected to your raspberryyou should see whatever your camera sees + overlay with sensors data!

It is still very first version:

  1. I only tested it on RPI 3, I added dependency to raspividand to bash:
    libraspberrypi-bin (>= 1.20180417-1), bash (>= 4.4-5)
    

    Perhaps dependency versions are higher then it really needs, just had no opportunity to test it on another envs.

  2. Do not to blame me guys for not opening sources. There are such a mess, need to sort them first.
  3. It still consumes too much of CPU time. After holidays I’ll work a bit on optimizations. It uses text atlas, but still builds text layout dynamically. It should render every static text to texture; per profiling survey results, it should improve performance on 30-40% (since most of text labels are static).
  4. Any proposals are welcome.

How enable or disable service

If you want to enable bird-osdon boot, you should run:

$ sudo systemctl enable bird-osd

This command disables service:

$ sudo systemctl disable bird-osd

How to uninstall

And this command removes bird-osdfrom you raspberry device:

$ dpkg -P bird-osd

Relevant topics

Edge detection for text – simple edge detection shader for text-like foreground drawings

Please follow and like us:

Cross compilation for Raspberry from Sierra

In very short

If you need to compile something for raspberry just run this:

path/to/clang --target=arm-linux-gnueabihf --sysroot=/some/path/arm-linux-gnueabihf/sysroot my-happy-program.c  -fuse-ld=lld

In command above “arm-linux-gnueabihf” – is my target triple.

If you don’t like LLVM or just need GCC, read Yuzhou Cheng’s article . Or lookup in nets something like “cross compilation for raspberry”. This may help. Below we describe how to do it with LLVM.

Disclaimer

We assume that reader knows how to deal with command line. If not, don’t worry, it’s ok, not to know some things in our life. Feel free and just ask questions in comments.

Let’s start

Root FS

Of course you still need rootfs. And also you perhaps need gcc binutils, but perhaps you would like to use ones provided by llvm infrastructure. But. You don’t have to build it, just get it, e.f. from Linux package. But actually I’m looking for solution how to make it enough just to mount my raspberry rootfs.

How to get LLVM

At current moment there are precompiled binaries for Mac OS (go to “Pre-Built Binaries” paragraph):

http://releases.llvm.org/download.html

Or for version 7.0.0 you may run this in terminal:

$ wget http://releases.llvm.org/7.0.0/clang+llvm-7.0.0-x86_64-apple-darwin.tar.xz

Compiling LLVM from sources

Don’t worry this is a bit different from building gcc. Difference is in statistics fact, that it usually successful and you can really drink cup of coffee.

Prerequirements

Below are few brew commands which adds all dependencies we need.

$ brew install swig
$ brew install cmake

Get sources

Get LLVM, Clang, LLD and LLDB sources, once again same link:

http://releases.llvm.org/download.html

Or for 7.0.0:
LLVM
Clang
LLD
LLDB

1. Extract LLVM sources.

2. Extract LLD into llvm/tools/lld

3. Extract LLDB into llvm/tools/lldb

4. Most tricky part: lldb needs to be code signed. This article describes how to to that. Actually you should find it in your lldb sources dir, in lldb/docs/code-signing.txt.

5. Create some binary dir, let say “llvm.darwin-x86_64”, and cd into it.

6. Compile

cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release <path to llvm sources>

make -j<num-parallel jobs, for me it is 8>

7. Test it.

make -j8 check

8. Use it!

Post scriptum

Optionally you may use legacy binutils. In this case install them with brew:

$ brew install arm-linux-gnueabihf-binutils

But I prefer just to use single solution.

CMake Toolchain

Below is my cmake toolchain file, which uses clang (built from sources). Hope it will be useful for you.

toolchain.cmake

SET(CMAKE_SYSTEM_VERSION 1)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

# Custom toolchain-specific definitions for your project
set(PLATFORM_ARM "1")
set(PLATFORM_COMPILE_DEFS "COMPILE_GLES")

# There we go!
# Below, we specify toolchain itself!

SET(TARGET_TRIPLE arm-linux-gnueabihf)

# Specify your target rootfs mount point on your compiler host machine
SET(TARGET_ROOTFS /Volumes/rootfs-${TARGET_TRIPLE})

# Specify clang paths
SET(LLVM_DIR /Users/stepan/projects/shared/toolchains/llvm-7.0.darwin-release-x86_64/install)
SET(CLANG ${LLVM_DIR}/bin/clang)
SET(CLANGXX ${LLVM_DIR}/bin/clang++)

# Specify compiler (which is clang)
SET(CMAKE_C_COMPILER   ${CLANG})
SET(CMAKE_CXX_COMPILER ${CLANGXX})

# Specify binutils

SET (CMAKE_AR      "${LLVM_DIR}/bin/llvm-ar" CACHE FILEPATH "Archiver")
SET (CMAKE_LINKER  "${LLVM_DIR}/bin/llvm-ld" CACHE FILEPATH "Linker")
SET (CMAKE_NM      "${LLVM_DIR}/bin/llvm-nm" CACHE FILEPATH "NM")
SET (CMAKE_OBJDUMP "${LLVM_DIR}/bin/llvm-objdump" CACHE FILEPATH "Objdump")
SET (CMAKE_RANLIB  "${LLVM_DIR}/bin/llvm-ranlib" CACHE FILEPATH "ranlib")

# You may use legacy binutils though.
#SET(BINUTILS /usr/local/Cellar/arm-linux-gnueabihf-binutils/2.31.1)
#SET (CMAKE_AR      "${BINUTILS}/bin/${TARGET_TRIPLE}-ar" CACHE FILEPATH "Archiver")
#SET (CMAKE_LINKER  "${BINUTILS}/bin/${TARGET_TRIPLE}-ld" CACHE FILEPATH "Linker")
#SET (CMAKE_NM      "${BINUTILS}/bin/${TARGET_TRIPLE}-nm" CACHE FILEPATH "NM")
#SET (CMAKE_OBJDUMP "${BINUTILS}/bin/${TARGET_TRIPLE}-objdump" CACHE FILEPATH "Objdump")
#SET (CMAKE_RANLIB  "${BINUTILS}/bin/${TARGET_TRIPLE}-ranlib" CACHE FILEPATH "ranlib")

# Specify sysroot (almost same as rootfs)
SET(CMAKE_SYSROOT ${TARGET_ROOTFS})
SET(CMAKE_FIND_ROOT_PATH ${TARGET_ROOTFS})

# Specify lookup methods for cmake
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

# Sometimes you also need this:
# set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)

# Specify raspberry triple
set(CROSS_FLAGS "--target=${TARGET_TRIPLE}")

# Specify other raspberry related flags
set(RASP_FLAGS "-D__STDC_CONSTANT_MACROS -D__STDC_LIMIT_MACROS")

# Gather and distribute flags specified at prev steps.
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${CROSS_FLAGS} ${RASP_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${CROSS_FLAGS} ${RASP_FLAGS}")

# Use clang linker. Why?
# Well, you may install custom arm-linux-gnueabihf binutils,
# but then, you also need to recompile clang, with customized triple;
# otherwise clang will try to use host 'ld' for linking,
# so... use clang linker.
set(CMAKE_EXE_LINKER_FLAGS ${CMAKE_EXE_LINKER_FLAGS} -fuse-ld=lld)

Sometimes you need to run “cmake” twice, for first compilation gives you this:

error: invalid linker name in argument '-fuse-ld=lld;-fuse-ld=lld'

I have no idea why that happens. Rerunning cmake really helps.

Ok, that’s it.

Message me if you feel lonely dude, I’m still on it, it will try to help!

Please follow and like us: